Objective

1. I can convert linear velocity to angular velocity.

2. I can convert angular velocity to linear velocity.

1. I can convert linear velocity to angular velocity. 2. I can convert angular velocity to linear velocity.

Things that <u>turn</u> have both a <u>linear velocity</u> and an <u>angular velocity</u>

Things that Turn - Examples

tire on a car or bike
teeth on a gear
a record on an old record player
rope around a pulley
on a Ferris seat wheel
hands on a clock
horse on a Merry-Go-Round

1. I can convert linear velocity to angular velocity. 2. I can convert angular velocity to linear velocity.

Definition:

Linear Velocity is distance/time:

Ex. 55 mph, 6 ft/sec, 27 cm/min, 4.5 m/sec

Definition:

Angular Velocity is turn/time:

Ex. 6 rev/min, 360° /day, 2π rad/hour

1. I can convert linear velocity to angular velocity. 2. I can convert angular velocity to linear velocity.

Deriving a formula which relates the two velocities:

Definition of Linear Velocity:

Recall Arc Length Formula >

 $v = \frac{r \theta}{t}$ $\omega = \frac{\theta}{t}$

Recall Definition of Angular Velocity->

Formula for Linear and Angular Velocity:

$$v = r \omega$$

- 1. I can convert linear velocity to angular velocity. 2. I can convert angular velocity to linear velocity.
 - 1. A bicycle with 20-in wheels is traveling down a road at 15 mi/h. Find the angular velocity of the wheel in revolutions per minute.

- 1. I can convert linear velocity to angular velocity. 2. I can convert angular velocity to linear velocity.
- 2. A wheel 4 ft in diameter is rotating at 80 r/min. Find the distance (in feet) traveled by a point on the rim in 1 second, that is, the linear speed of the point in ft/s.

$$V = ? \frac{1}{3} \frac{1}{3$$

- Objective

 1. I can convert linear velocity to angular velocity.

 2. I can convert angular velocity to linear velocity.
- A tire with a 9 inch radius is rotating at 30 mph. Find 1 the angular velocity of a point on its rim. Express the result in revolutions per minute.

1. I can convert linear velocity to angular velocity. 2. I can convert angular velocity to linear velocity.

5 Formulas to KNOW/MEMORIZE:

Arc Length:

Linear Velocity: $v = \frac{s}{t}$

$$s = r\theta$$

Area of a Sector: Angular Velocity: $\omega = \frac{\theta}{t}$

$$A = \frac{1}{2}\theta r^2$$

$$v = r \omega$$